
Journal of Pharmaceutical and Biomedical Analysis
18 (1998) 21–33

Multivariate calibration: applications to pharmaceutical
analysis1

M. Forina a,*, M.C. Casolino a, C. de la Pezuela Martinez b
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Abstract

The principles of multivariate calibration (MC) are presented, with reference to the main objectives of this
chemometrics technique: the reduction of the variance in the prediction of a response variable (generally, a chemical
quantity) and the possibility of the determination of the response in complex matrices with no or limited sample
preparation, as in the case of the determination of a drug in a medicament. In both cases MC uses the whole
information in a spectrum (a series of predictors). The possibility of the improvement of the MC performances,
eliminating some useless, noisy, predictors is shown. Variable selection has been performed using two original
techniques: a stepwise elimination procedure, based on the normalised coefficients of the regression equation relating
the response to the predictors and a technique based on iterative repetitions of the regression technique (partial least
squares regression, PLS), each time by weighting the predictors by their normalised regression coefficient computed
in the previous cycle. These strategies are illustrated by means of different data sets, a synthetic example and a real
example where MC, applied to near infrared spectroscopy, is used in the analysis of a drug. In this case also the
application of an original MC technique is shown, where a joint regression model is obtained for two different
instruments. © 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

The general procedure in chemical analysis is
composed of two steps. In the first step some
chemical and/or physical treatments, more or less
complex, are used on the samples in order to
obtain a system state where a measurable physical
quantity is correlated univocally with the chemical
quantity to be measured. The second step is the
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Fig. 1. Usual least squares regression line with the confidence hyperbole for the evaluation of the confidence interval of the
unknown, x.

calibration one. The physical quantity is measured
on a selected number of samples where the con-
tent of the analyte is known (standards); finally,
the mathematical model relating the measured
quantities with the corresponding chemical quan-
tities, the regression function, is obtained.

Frequently this function is linear. In the usual
procedure, under the assumption that the chemi-
cal quantity in the standards is known without
error, the ordinary linear least squares regression
is applied. The regression equation is obtained in
the form:

y=a+bx (1)

where y is the physical quantity, x is the chemical
quantity, a and b are the regression coefficients,
intercept and slope of the straight line.

In order to obtain the value of the unknown
chemical quantity for a new sample, the inverse of
Eq. (1) is used:

x=
(y−a)

b
(2)

where y is the value of the physical quantity,

obtained as the mean of M repetitions of the
measure on the sample.

Error variance can be estimated from the exper-
imental data. This variance is used to build a
suitable (depending on the number of repetitions
M) confidence hyperbole around the estimated
regression line (Fig. 1); from this hyperbole the
confidence interval of the unknown can be
obtained.

In spectrophotometric determinations, the used
physical quantity y is usually the maximum ab-
sorbance in the spectrum of the chemical compo-
nent; when the error on the measurement of the
physical quantity is constant, independent of its
magnitude, the above choice corresponds to the
minimum variance on the prediction of the chem-
ical quantity. Fig. 2 shows as, for an idealised
absorbance peak, the variance increases with the
decreasing absorbance.

Multivariate calibration uses many physical
quantities (predictors) to compute the value of the
chemical quantity (response), with two main
objectives:
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Fig. 2. Idealised peak with gaussian shape, and variance of the unknown as a function of the selected wavelength.

1. To predict the response with the minimum
variance;

2. To eliminate (totally or partially) sample treat-
ments: the state of the system must be such that
a block of measurable physical quantities is
correlated univocally with the chemical quantity.

The second objective corresponds to the majority
of the applications of multivariate calibration, in the
development of rapid analytical procedures for
quality control with spectral techniques (often near
infrared spectroscopy) of medicaments, foods, for-
age, or for the evaluation of physical properties of
difficult or expensive direct determination (e.g.
octane number).

Multivariate calibration uses the procedure of
‘inverse calibration’, in the sense that the equation
that expresses the response as a function of the
predictors

x=b0+b1y1+b2y2+ ....+bVyV (3)

is obtained directly in the calibration step. The term
‘inverse’ has the meaning of ‘inverse of the usual
procedure’: really ‘inverse calibration’ is a direct
calibration.

Because of this inversion, the nomenclature
used is changed:

response, for a single sampley
x single predictor
x vector of the V predictors measured on a

single sample
vector of the response measured on Ny
samples

X matrix (V columns, N rows) of the V pre-
dictors measured on the N samples

Sometimes the symbol X is used to indicate the
matrix of the predictors increased with a leading or
tailing column of 1.Eq. (3) becomes:

y=b0+b1x1+b2x2+ ....+bVxV (4)

or in matrix form:

y=Xb (5)

where b is the vector of the regression coefficients;
a column of 1 added in X allows to include in the
vector b also the intercept.
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Fig. 3. Idealised peak and variance of the unknown in the case of multivariate calibration with wavelengths in a window centred
around the peak maximum.

2. Decrease of the variance of the response

Only few lines are used here for this minor
objective of multivariate calibration.

In the univariate calibration model, in the in-
verse form, simplified with intercept zero:

y=bMxM (6)

the predictor xM is the value of the peak ab-
sorbance, for which the regression coefficient bM

is minimum, so that the variance of the response
is minimum (under the hypothesis that the vari-
ance of the predictor is independent of the
wavelength):

sy
2=bM

2 sX
2 (7)

When a different predictor xdBxM is used, the
regression coefficient is larger:

y=bdxd=bM

xM

xd

xd (8)

and the variance of the response is also larger:

sy
2=

�
bM

xM

xd

�2

sx
2 (9)

When, around the absorbance peak, D more
predictors are used, the regression equation
becomes:

y=
bMxM+ %

D

d=1

�
bM

xM

xd

�
xd

D+1
(10)

and, under the hypothesis of error independent on
the predictors, response variance is:

sy
2=

bM
2 sx

2 + %
D

d=1

�
bM

xM

xd

�2

sx
2

(D+1)2 (11)

Fig. 3 shows, for the idealised peak, the effect
of D on the variance of the response. As D
increases, each predictor contributes to the esti-
mate of the response both with useful information
and with noise. For the first predictors (corre-
sponding to wavelengths in the neighbourhood of
the peak) the amount of useful information is
much more than the amount of noise, so that the
behaviour of the response variance is very similar
to that computed for the repetition of a measure-
ment D times, with the variance of the mean
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Fig. 4. UV spectra of cresols in the interval 240–300 nm.

decreasing with the increase of D. With larger
windows first useful information and noise bal-
ance, so that the variance of the response is
almost independent on D ; then, when the win-
dows contain also wavelengths with very small
signal, very small useful information, the vari-
ance of the response increases.

A second advantage of the use of multivari-
ate calibration with the wavelengths in a win-
dow of suitable amplitude centred around the
peak is the relative insensitivity to the wave-
length shift.

When only the peak signal is used, a wave-
length shift always causes a diminution of the
signal; on the contrary with multivariate cali-
bration signal diminution due to the wave-
lengths that the shift moves away from the
peak is balanced from the signal increase due
to the wavelengths that the shift approaches to
the peak.

So, multivariate calibration, with the use of
all the measured information, and with a criti-
cal choice of the predictors, can produce more
precise results without additional cost.

3. Determinations in complex matrices

3.1. Data

Three data sets are used here, to show the
performances of multivariate calibration in the
case of complex chemical systems.

The first data set, CRESOLS, has been ob-
tained from data published by Carney and San-
ford [1]; the UV spectra in the wavelength range
from 240 to 300 nm, of the three isomeric cresols,
roughly drawn from [1] and reported in Fig. 4,
were used to compute the spectra of 50 mixtures
with random concentrations of the three cresols.
In the same wavelength interval, 440 equally
spaced predictors describe each spectrum. A mod-
erate gaussian noise has been added to the 50
spectra.

The second and the third data sets, UAB1 and
UAB2, refer to the same 28 drug samples,
analysed with two different instruments.

The pharmaceutical product used was Mentis®,
a commercially available preparation from Labo-
ratorios Menarini S.A. (Badalona, Spain) contain-
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Fig. 5. Standard error of prediction as a function of the number of PLS latent variables; data set UAB1; 14 cancellation groups.

ing a nominal 880 mg g−1 of the active com-
pound pirisudanol dimaleate, viz. butanedioic
acid 2-(dimethylamino) ethyl [5-hydroxy-4-(hy-
droxymethyl)-6-methyl-3-pyridinyl]methyl ester.
The preparation includes magnesium stearate, talc
and colloidal silica intended to improve the stabil-
ity and the mechanical properties of the mixture
in dosing and encapsulation. Samples contain the
active principle covering a range between 841.7
and 911.4 mg g−1.

UAB1 set was recorded with an NIRSystems
6500 near infrared spectrometer equipped with a
reflectance detector and spinning sample module.

UAB2 set was recorded with an NIRSystems
5000 near infrared spectrometer equipped with a
reflectance detector and an AP6649 ANO4P fibre
optic module for qualitative and quantitative
analysis.

Each sample was used to record three spectra,
each being the average of 50 scans over the range

1100–2500 nm. The average of the three spectra
was used.

In both data sets, UAB1 and UAB2, only 350
equally spaced predictors have been used in data
analysis. Additional information concerning these
data can be found in [2].

3.2. Case of mixtures of known chemical
components

In the case of a simple mixture of C chemical
components, with known spectra, a system of C
equations solves the analytical problem:

x1=k11y1+k12y2+k13y3

x2=k21y1+k22y2+k23y3

x3=k31y1+k32y2+k33y3 (12)

where y1, y2 and y3 are the concentrations of the
three components of the mixture and x1, x2 and x3
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Fig. 6. Predicted versus measured response; data set UAB1; 14 cancellation groups; optimum regression model with three latent
variables.

are the absorbance values measured for this sam-
ple at three selected wavelengths.

The absorbance coefficients kwavelength, component

are obtained from the known spectra, at the same
wavelengths. Carney and Sanford suggested for
the example CRESOLS 272.8, 277.4 and 285.8
nm.

The system, here in matrix notation:

x=Ky (13)

can be solved:

y=K−1x (14)

when the matrix of the absorbance coefficients
can be inverted. The quality of the final regression
equation is measured by the determinant of ma-
trix K.

This procedure can be indicated as classical
multicomponent calibration.

3.3. Case of one component in matrix with
interference

More frequently, and it is the general case in
the determination of a drug in a medicament, or
of a chemical component in a food, it is impossi-
ble to know the spectra of all chemical species,

and there are also interactions and other effects
that make it impossible to use the above proce-
dure to obtain a regression equation for the un-
known. In this case the typical procedures of
multivariate calibration can be used.

Multivariate calibration born as the evolution
of classical multicomponent calibration [3] and
evolves [4–6] with the use of powerful regression
techniques and with the availability of spec-
trophotometers able to produce as many as 1200
predictors for each spectrum.

Generally the original spectra undergo a pre-
treatment: first or second derivative, standard
normal variate (SNV) transformation, i.e. row
autoscaling (for each spectrum, subtraction of the
mean value of the spectrum and division for its
standard deviation), multiplicative scatter correc-
tion, Fourier transform, etc…

N samples are used in the calibration step.
These samples are not standard samples in the
usual meaning of the word, but generally they are
real samples, representative of the problems,
analysed with a reference technique, that often
requires a complex treatment of separation. Be-
cause of the cost of the classical analysis, the
samples for calibration are selected among a num-
ber of candidate samples. The choice of the sam-
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ple subset is made by means of experimental design,
generally performed on the principal components
of the spectra of the candidate samples. Very useful
strategies are D-optimum design for a quadratic
regression model, and S-optimum design (space-
filling design) that selects the samples in order to
explore uniformly the space of the principal compo-
nents.

The spectra X (original or transformed) and the
response y for the N samples give a system of
equations:

y1=a+b1x11+b2x12+ ....+bVx1V

y2=a+b1x21+b2x12+ ....+bVx1V

..........................

yi1=a+b1xi1+b2xi2+ ....+bVxiV

..........................

yN=a+b1xN1+b2xN2+ ....+bVxNV (15)

that can not be solved directly because of the fact
that generally the number V of predictors is larger
than the number of samples, and also because of
the very large correlation between predictors that
causes a very large prediction error also in the case
of NIR filter instruments, where ordinary least
squares can frequently be used.

For these reasons multivariate calibration uses
biased regression techniques, as principal compo-
nent regression (PCR) or partial least squares
regression (PLS) [7,8]. Biased regression techniques
use a reduced part of the information in the
predictors. In this way, they introduce a small bias
in the result but they reduce the random error
eliminating the noise associated with the discarded
part of the information.

PCR starts with the computation of principal
components (PC). Generally the predictors are
centred; a multidimensional orthogonal rotation is
performed from the original space of the predictors
to the PC space. Principal components are non-cor-
related variables, linear combination of the original
predictors, ordered according to their variance
(eigenvalue). Always, from a lot of original predic-
tors a small PC number (B20) with significant
variance is obtained (during an orthogonal rotation
the number of variables does not change but,

because of the very large correlation between the
original predictors, the last PCs have variance
zero). The ‘scores’ are the co-ordinates in the PC
space; the ‘loadings’ are the coefficients of the
predictors in the linear combination that gives the
components.

PCR performs stepwise ordinary least squares
regression (S-OLS) on the principal components. In
each iteration of S-OLS, one of the PC is selected
and added in the calibration model, until the
introduction of a new component does not improve
the result. The number of PC used defines the
‘complexity’ of the biased regression technique.

PLS works in a similar way, but the complexity
is measured by the number of PLS components
(latent variables) analogous to PC, and computed
directly in PLS, instead of in a previous step as in
PCR.

The complexity of a biased regression technique
depends in principle on the chemical complexity of
the problem, the number of chemical species whose
concentration can change in the samples, and also
(in the case of near infrared spectroscopy) on the
physical structure of the sample. This is a very
important feature of some samples typical of phar-
maceutical analysis (e.g. tablets). Particle size can
be selected as a response variable, instead of a
chemical quantity, and determined by means of
multivariate calibration.

The optimum complexity of a regression tech-
nique is obtained by means of predictive optimisa-
tion: some calibration samples are not used to build
the regression model, and the model is used to
predict the response for these left-out objects.
Frequently, predictive optimisation is performed
with the procedure of the ‘cancellation groups’.
Calibration samples are divided into cancellation
groups, and the regression procedure is repeated as
many times as the cancellation groups are. The limit
of this procedure is known as leave-one-out, with
only one object in each cancellation group. Each
time the samples in one cancellation group are
left-out; the regression equation is obtained with
the other samples, and the response for the left-out
samples is predicted. So, prediction is obtained for
all the objects in the calibration set. The standard
deviation of the prediction error is known as
standard error of prediction (SEP). When the
notation C.V. SEP is used it means that the cross
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Fig. 7. Importance spectrum; data set CRESOLS; response: p-cresol; 10 cancellation groups, optimum regression model with three
PLS latent variables.

validation procedure, based on cancellation groups,
has been used. The minimisation of SEP is the
criterion generally used to select the optimum model
complexity, as shown in Fig. 5 for data set UAB1.
The value of SEP corresponding to the optimum
complexity is the measure of the performance of the
analytical procedure. Details are usually shown as
a plot of the predicted response versus the measured
response, as in Fig. 6. This plot can reveal the
presence of outliers and of non-linearity.

Both PCR and PLS give the regression equation
as a function of the components; however it is easy
to express the regression equation in terms of the
original predictors (closed form). The regression
coefficients of the closed form are a measure of the
relevance of each predictor in the regression equa-
tion. A better measure is the ‘importance’ of the
predictor, product between the regression coeffi-
cient and the standard deviation of the predictor in
the calibration set.

Fig. 7 represents the ‘spectrum’ of the importance
of the predictors, obtained for p-cresol, (data set
CRESOLS) using PLS model with three latent
variables.

A small standard deviation and a small regression

coefficient indicate that the variation of the response
caused by the variation of the predictor is very
small, so small that possibly the predictor is not
relevant. Its elimination can correspond to the
elimination of noise and to an improvement of the
regression model. The mean value of the predictor
has no influence on the importance and on the result
after elimination of the predictor, because its con-
stant effect is balanced by a variation of the
intercept. A back-wise procedure can be applied to
refine the regression model, where each time the
predictor with the minimum value of the impor-
tance is cancelled. Fig. 8 shows as the mean
prediction error (analogous to SEP) changes during
the elimination cycles. The final model, with only
70 predictors performs two times better than the
original model with 440 predictors.

The same procedure, applied to data set UAB1,
gives a refined regression model retaining only 20
predictors (Fig. 9a) with a mean error decrease from
�5.4 to 2.2.

3.4. Weighted predictors PLS (WP-PLS)

A different procedure to refine the PLS regression
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Fig. 8. C.V. mean error during the stepwise elimination of the predictors; in each elimination cycle the predictor with the smallest
importance is cancelled. Data set CRESOLS, response: p-cresol.

model is the iterative re-weighted PLS technique
[9]. Here after a first PLS regression, the predictor
importance (computed for each variable as
product between regression coefficient and stan-
dard deviation) is used to weight the predictors
before to perform a second PLS regression. The
importance obtained from the second calibration
model is used to weight the predictors before the
third regression, and so on.

With this repeated weighting procedure, non
relevant predictors become so small that they are
cancelled automatically by the number of digits
allowed by the precision of data in the computing
program (alternatively, a cut-off value can be
used to eliminate predictors with importance less
than the cut-off value).

Generally WP-PLS converges toward a model
with a minimum number of predictors, and a
value of SEP lower than the error obtained with
all the predictors. The result with UAB1 is shown
in Fig. 9(b). In this case WP-PLS retains only
four predictors, and the prediction mean error is
about 3.6. So, it seems that WP-PLS performs
worse than the technique of back-wise elimina-
tion. However, it must be noticed that the real
performance of a procedure must be evaluated in

conditions of full-validation [10], i.e. on samples
which have never been used in the development of
the final model (complexity, number of retained
predictors), and it is not the case of SEP values
and mean prediction errors reported here, referred
to the predictive optimisation. Moreover, back-
wise elimination is a very long procedure, which
makes it almost impossible to use full-validation.
Finally, sometimes a minimum number of predic-
tors, obtained at the expense of a slightly worse
performance, can be preferable.

In other cases WP-PLS converges toward a
minimum number of predictors but with an SEP
greater than SEP obtained with all the predictors.
This is the case of o-cresol and m-cresol (data set
CRESOLS). This result is due to the extreme
overlapping between the spectra of the two chem-
ical components, which makes it necessary to use
almost all the predictors for the optimum perfor-
mances. In this example the back-wise elimination
reduces the predictor number to only �370, with
a minimum improvement of the performance.
WP-PLS retains ten predictors, in three groups of
neighbours centred around the wavelengths se-
lected by Carney and Sanford in their classical
multicomponent strategy.
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Fig. 9. Data set UAB1. (a) C.V. mean error in the stepwise elimination of predictors; (b) C.V. mean error in the cycles of WP-PLS.
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Fig. 10. Evaluation of optimum complexity for PLS regression with data sets UAB1 and UAB2 (12 samples) and for the joint
regression model with the augmented data matrix (six samples from UAB1 and six samples from UAB2).

4. Joint PLS regression model for two
instruments

Multivariate calibration with the PLS regres-
sion technique can also be applied in an unusual
way to help in an important problem, that of two
or more instruments used for the same analysis.
Never two instruments are identical, and in NIR
spectroscopy it is almost impossible to use the
same regression equation with two different in-
struments. Several procedures have been devel-
oped to transfer the regression equation or the
spectra from one instrument to another one.

Joint PLS regression [11] uses an augmented
matrix of the predictors, here shown as a parti-
tioned matrix:

XAU=
)X1

0
0

X2

)

The augmented matrix results from four ma-
trices. The first, X1, is the matrix of the predictors
for the N1 samples of the first instrument. X2 is
the matrix of the predictors for the N2 samples of
the second instruments. The first 0 matrix is a
matrix of zeroes with as many rows as X1 and as
many columns as X2; the second 0 matrix is a
matrix of zeroes with as many rows as X2 and as
many columns as X1.

The joint regression model has generally an
optimum complexity lightly greater than the sepa-
rate regression models (one to two latent variables
more used to explain the differences between the
two instruments); its SEP is generally intermediate
between those of the separate models, as in the
case shown in Fig. 10. In this example the aug-
mented matrix has been obtained from data sets
UAB1 and UAB2, constituted by the spectra of
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the same drug measured with two different instru-
ments. The three calibration models (two models
developed on the two instruments separately and
the joint model) have been obtained by using the
same number (12) of samples, selected by means
of PC design on the separate PC plots for the two
instruments. In the case of the joint regression
model six samples were selected from the PC plot
of the first instrument and six samples from the
PC plot of the second one.

5. Conclusions

Multivariate calibration with biased regression
techniques is a powerful tool for analytical chem-
istry, of possible use in many problems of phar-
maceutical analysis, both in the case of direct
analysis in complex matrices and of multicompo-
nent analysis in simple systems.

Regression results can be improved by the use
of techniques of elimination of non-informative
predictors; however, much care is necessary in the
refinement of the regression model and in the
evaluation of its performances. Full-validation is
strongly suggested, in spite of the very long time
usually necessary.

The flexibility of the PLS algorithm also makes
applications to unusual problems possible, as in
the case of the joint regression model shown here.

As in all problems where chemometrics is re-
quired, it must be remembered that the tools of
chemometrics can be used easily (a touch on the
keyboard of the computer), but the abuse is very
dangerous for science, as the abuse of drugs for
humans.
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